3.164 \(\int \frac {a+b \tanh ^{-1}(\frac {c}{x^2})}{x^7} \, dx\)

Optimal. Leaf size=57 \[ -\frac {a+b \tanh ^{-1}\left (\frac {c}{x^2}\right )}{6 x^6}+\frac {b \log (x)}{3 c^3}-\frac {b \log \left (c^2-x^4\right )}{12 c^3}-\frac {b}{12 c x^4} \]

[Out]

-1/12*b/c/x^4+1/6*(-a-b*arctanh(c/x^2))/x^6+1/3*b*ln(x)/c^3-1/12*b*ln(-x^4+c^2)/c^3

________________________________________________________________________________________

Rubi [A]  time = 0.04, antiderivative size = 57, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, integrand size = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.286, Rules used = {6097, 263, 266, 44} \[ -\frac {a+b \tanh ^{-1}\left (\frac {c}{x^2}\right )}{6 x^6}-\frac {b \log \left (c^2-x^4\right )}{12 c^3}+\frac {b \log (x)}{3 c^3}-\frac {b}{12 c x^4} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*ArcTanh[c/x^2])/x^7,x]

[Out]

-b/(12*c*x^4) - (a + b*ArcTanh[c/x^2])/(6*x^6) + (b*Log[x])/(3*c^3) - (b*Log[c^2 - x^4])/(12*c^3)

Rule 44

Int[((a_) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d*
x)^n, x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && ILtQ[m, 0] && IntegerQ[n] &&  !(IGtQ[n, 0] && L
tQ[m + n + 2, 0])

Rule 263

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Int[x^(m + n*p)*(b + a/x^n)^p, x] /; FreeQ[{a, b, m
, n}, x] && IntegerQ[p] && NegQ[n]

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 6097

Int[((a_.) + ArcTanh[(c_.)*(x_)^(n_)]*(b_.))*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*ArcTa
nh[c*x^n]))/(d*(m + 1)), x] - Dist[(b*c*n)/(d*(m + 1)), Int[(x^(n - 1)*(d*x)^(m + 1))/(1 - c^2*x^(2*n)), x], x
] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[m, -1]

Rubi steps

\begin {align*} \int \frac {a+b \tanh ^{-1}\left (\frac {c}{x^2}\right )}{x^7} \, dx &=-\frac {a+b \tanh ^{-1}\left (\frac {c}{x^2}\right )}{6 x^6}-\frac {1}{3} (b c) \int \frac {1}{\left (1-\frac {c^2}{x^4}\right ) x^9} \, dx\\ &=-\frac {a+b \tanh ^{-1}\left (\frac {c}{x^2}\right )}{6 x^6}-\frac {1}{3} (b c) \int \frac {1}{x^5 \left (-c^2+x^4\right )} \, dx\\ &=-\frac {a+b \tanh ^{-1}\left (\frac {c}{x^2}\right )}{6 x^6}-\frac {1}{12} (b c) \operatorname {Subst}\left (\int \frac {1}{x^2 \left (-c^2+x\right )} \, dx,x,x^4\right )\\ &=-\frac {a+b \tanh ^{-1}\left (\frac {c}{x^2}\right )}{6 x^6}-\frac {1}{12} (b c) \operatorname {Subst}\left (\int \left (-\frac {1}{c^4 \left (c^2-x\right )}-\frac {1}{c^2 x^2}-\frac {1}{c^4 x}\right ) \, dx,x,x^4\right )\\ &=-\frac {b}{12 c x^4}-\frac {a+b \tanh ^{-1}\left (\frac {c}{x^2}\right )}{6 x^6}+\frac {b \log (x)}{3 c^3}-\frac {b \log \left (c^2-x^4\right )}{12 c^3}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 62, normalized size = 1.09 \[ -\frac {a}{6 x^6}+\frac {b \log (x)}{3 c^3}-\frac {b \log \left (x^4-c^2\right )}{12 c^3}-\frac {b}{12 c x^4}-\frac {b \tanh ^{-1}\left (\frac {c}{x^2}\right )}{6 x^6} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*ArcTanh[c/x^2])/x^7,x]

[Out]

-1/6*a/x^6 - b/(12*c*x^4) - (b*ArcTanh[c/x^2])/(6*x^6) + (b*Log[x])/(3*c^3) - (b*Log[-c^2 + x^4])/(12*c^3)

________________________________________________________________________________________

fricas [A]  time = 0.64, size = 67, normalized size = 1.18 \[ -\frac {b x^{6} \log \left (x^{4} - c^{2}\right ) - 4 \, b x^{6} \log \relax (x) + b c^{2} x^{2} + b c^{3} \log \left (\frac {x^{2} + c}{x^{2} - c}\right ) + 2 \, a c^{3}}{12 \, c^{3} x^{6}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arctanh(c/x^2))/x^7,x, algorithm="fricas")

[Out]

-1/12*(b*x^6*log(x^4 - c^2) - 4*b*x^6*log(x) + b*c^2*x^2 + b*c^3*log((x^2 + c)/(x^2 - c)) + 2*a*c^3)/(c^3*x^6)

________________________________________________________________________________________

giac [A]  time = 0.24, size = 65, normalized size = 1.14 \[ -\frac {b \log \left (x^{4} - c^{2}\right )}{12 \, c^{3}} + \frac {b \log \relax (x)}{3 \, c^{3}} - \frac {b \log \left (\frac {x^{2} + c}{x^{2} - c}\right )}{12 \, x^{6}} - \frac {b x^{2} + 2 \, a c}{12 \, c x^{6}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arctanh(c/x^2))/x^7,x, algorithm="giac")

[Out]

-1/12*b*log(x^4 - c^2)/c^3 + 1/3*b*log(x)/c^3 - 1/12*b*log((x^2 + c)/(x^2 - c))/x^6 - 1/12*(b*x^2 + 2*a*c)/(c*
x^6)

________________________________________________________________________________________

maple [A]  time = 0.04, size = 45, normalized size = 0.79 \[ -\frac {a}{6 x^{6}}-\frac {b \arctanh \left (\frac {c}{x^{2}}\right )}{6 x^{6}}-\frac {b}{12 c \,x^{4}}-\frac {b \ln \left (\frac {c^{2}}{x^{4}}-1\right )}{12 c^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*arctanh(c/x^2))/x^7,x)

[Out]

-1/6*a/x^6-1/6*b/x^6*arctanh(c/x^2)-1/12*b/c/x^4-1/12*b/c^3*ln(c^2/x^4-1)

________________________________________________________________________________________

maxima [A]  time = 0.32, size = 55, normalized size = 0.96 \[ -\frac {1}{12} \, {\left (c {\left (\frac {\log \left (x^{4} - c^{2}\right )}{c^{4}} - \frac {\log \left (x^{4}\right )}{c^{4}} + \frac {1}{c^{2} x^{4}}\right )} + \frac {2 \, \operatorname {artanh}\left (\frac {c}{x^{2}}\right )}{x^{6}}\right )} b - \frac {a}{6 \, x^{6}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arctanh(c/x^2))/x^7,x, algorithm="maxima")

[Out]

-1/12*(c*(log(x^4 - c^2)/c^4 - log(x^4)/c^4 + 1/(c^2*x^4)) + 2*arctanh(c/x^2)/x^6)*b - 1/6*a/x^6

________________________________________________________________________________________

mupad [B]  time = 0.89, size = 66, normalized size = 1.16 \[ \frac {b\,\ln \relax (x)}{3\,c^3}-\frac {b\,\ln \left (x^4-c^2\right )}{12\,c^3}-\frac {b}{12\,c\,x^4}-\frac {a}{6\,x^6}-\frac {b\,\ln \left (x^2+c\right )}{12\,x^6}+\frac {b\,\ln \left (x^2-c\right )}{12\,x^6} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*atanh(c/x^2))/x^7,x)

[Out]

(b*log(x))/(3*c^3) - (b*log(x^4 - c^2))/(12*c^3) - b/(12*c*x^4) - a/(6*x^6) - (b*log(c + x^2))/(12*x^6) + (b*l
og(x^2 - c))/(12*x^6)

________________________________________________________________________________________

sympy [A]  time = 23.62, size = 94, normalized size = 1.65 \[ \begin {cases} - \frac {a}{6 x^{6}} - \frac {b \operatorname {atanh}{\left (\frac {c}{x^{2}} \right )}}{6 x^{6}} - \frac {b}{12 c x^{4}} + \frac {b \log {\relax (x )}}{3 c^{3}} - \frac {b \log {\left (- i \sqrt {c} + x \right )}}{6 c^{3}} - \frac {b \log {\left (i \sqrt {c} + x \right )}}{6 c^{3}} + \frac {b \operatorname {atanh}{\left (\frac {c}{x^{2}} \right )}}{6 c^{3}} & \text {for}\: c \neq 0 \\- \frac {a}{6 x^{6}} & \text {otherwise} \end {cases} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*atanh(c/x**2))/x**7,x)

[Out]

Piecewise((-a/(6*x**6) - b*atanh(c/x**2)/(6*x**6) - b/(12*c*x**4) + b*log(x)/(3*c**3) - b*log(-I*sqrt(c) + x)/
(6*c**3) - b*log(I*sqrt(c) + x)/(6*c**3) + b*atanh(c/x**2)/(6*c**3), Ne(c, 0)), (-a/(6*x**6), True))

________________________________________________________________________________________